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Abstract

This thesis investigates gradient descent learning algorithms

for multi-layer feed forward neural networks. A technique is

developed which uses error prediction to reduce the number of

weights/nodes in a network. The research begins by studying the

first and second order back-prop training algorithms along with

their convergence properties. A network is reduced by making an

estimate of the amount of error which would occur when a weight(s)

is removed. This error estimate ir -hen used to determine if a

particular weight is essential to the operation of the network. If

not, it is removed and the network retrained. The process is

repeated until the network is reduced to the desired size, or the

error becomes unacceptable.
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I Introduction

Background

In recent years neural networks have become a focus for study

of many scholars because they hold the promise to solve complex

problems in a rather short period of time. Some of today's

problems can be difficult to solve, and may require many hours of

computer time just to arrive at an approximate solution.

Unfortunately, in many cases an answer may be needed in real time,

(almost immediately) as soon as the input data is received or

generated. Some examples which are getting a lot of attention

today are pattern and speech recognition systems. These systems

are being employed to operate or guide vehicles or defensive

systems where a change initiated by the surrounding environment

demands an immediate response. A defense system utilizing target

recognition requires potential targets be identified quickly and

accurately if it is to be of any use. Obviously, the accuracy and

response time of a system are critical factors which can make major

contributions to the final outcome. In situations where secords

count, it can make a difference between life and death - success or

failure.
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Mapping Functions

Scientist and mathematicians realized early on that mapping

functions might hold the answer to solving complex problems

rapidly. If the correct mapping function for a particular problem

could be found, it could be employed to solve the problem

relatively quickly and directly without the need of arduous time

consuming repetitive calculations. The input data could simply be

"presented" to the function, and the output solution calculated.

However, finding the right mapping function for a given problem was

not always an easy task.

Neural networks promised to overcome many of the difficulties

associated with complex problems. Basically, a network can be

thought of as a mathematical function which attempts to map a set

of input variables to a desired set of output variables (i.e.,

classes). A network can provide a solution quite fast once it has

been trained to respond to a particular problem. Training, on the

other hand, can be very time intensive. It can range from minutes

to hours or even days depending upon the accuracy desired.

However, a network's response time is not necessarily hindered due

to the training requirement. Depending upon the type of network,

training can take place prior to the presentation of input (test)

data. In this way a neural network can arrive at a solution

quickly, simply by applying the test data to the mapping function.
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Training

In some cases a network can fail its training process. This

is generally caused by the failure of the training algorithm to

converge to the proper set of parameters (weights). Reasons for

this can vary, and can be attributed to such things as poor

convergence properties of the training algorithm, incorrect initial

conditions, poor network architecture, insufficient number of

training examples, and/or poor input training data.

There are two factors which are major influences affecting

training time. The first of these is the type of training

algorithm used. Among training algorithms, two features which are

highly desirable are small size (in terms of program code length),

and good convergence properties. However, these two features tend

to be self-opposing. In a general sense, improving the convergence

property of an algorithm usually produces a larger size algorithm.

For example, although second order training algorithms tend to

converge faster, their algorithms are longer and require more time

to compute than their first order counterparts. The key to

choosing an algorithm with good training speed is to pick one which

strikes an optimum balance between length of code and rate of

convergence. Little is gained in terms of speed if the training

algorithm converges twice as fast for each training iteration, but

each iteration takes 10 times as long (Ruck, 1989).
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The second major factor which affects training time is the

size of the network or its architecture. Larger nets take longer

to train due to the increase number of nodal calculations. Also,

as the number of layers increase, the net's complexity increases

too. Larger nets can, in certain instances, exhibit a higher

degree of accuracy. However, increasing the size of the network

does not in itself lead to better precision. Rather, accuracy is

influenced by many factors among which is the accuracy and amount

of training data. Certainly, garbage in will produce garbage out

regardless of the size or architecture of the network.

Problem Statement

This research will investigate gradient descent learning

algorithms for multi-layer feed forward networks. A technique will

be developed that will use error prediction to determine the

contribution of the various weights and nodes to the overall

solution of a given size neural network. It will investigate ways

to reduce the size of a net using both first and second order

training algorithms and error prediction techniques.
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Scope

The goal of this research is to devise a method that will

train a network while at the same time determine whiich of the

weights and nodes are essential and which are not. The non-

essential weights are those weights which when removed result in

the least amount of acceptable error. Equivalently, the same holds

true for the nodes. A node can be removed if the error associated

with removing all its weights results in an admissible error.

Current techniques which attempt to prioritize the importance

of weights (or nodes) use a process called saliency. Saliency

assign a number to each parameter (i.e., rank orders the weights or

nodes) based upon its relative importance to the network. Thc

saliency number for a particular parameter is based upon the amount

of error induced at the output when that one parameter is removed

from the net. Once the parameter with the lowest saliency is

found, it is then permanently removed, the network retrained, and

the process repeated again o. the "pruned" network until the net is

reduced to the desired size, or the output error is excessive.

This entire training and pruning process can be slow and require a

considerable amount of time especially for large networks. This

research will attempt to improve upon this method by examining ways

to improve the training algorithm (e.g., using a second order

method), and by eliminating one or more parameters at the same time
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based upon a prediction of the error. The amount of error

associated with one or more weights will be estimated by using a

Taylor series along with first and second order information

gathered during the training process. By using this technique it

is hoped that a network can be trained and reduced to its essential

elements in a relatively short period of time.

For this research two layer networks will be used to study the

training and reduction problem. A two layer network is defined as

a network having one output layer and one hidden layer. One or

both layers can employ non-linear squashing functions (e.g.,

sigmoids) at their nodal outputs. Two layer networks which have

linear outputs are classified as Cybenko networks, and are capable

of mapping any continuous function (Cybenko, 1989). These features

make Cybenko networks attractive since they are less complex, and

can be trained and reduced much faster than other multi-layer

networks.
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Methodology and Approach

This research will be divided into two princip]e phases. The

purpose of the first phase is to examine the converqence properties

of the first and second order back-propagation training algorithms

and improve upon them. Before testing the algorithms on a neural

network learning problem, however, they will first be applied to

well understood functions (i.e., polynomials in one variable) to

test their ability to converge to a known local minimum. The

algor-ithms will be judged on how well they converge over a wide

range of starting values including all critical points (points of

inflection, minima, and maxima). In dcidition, the performance of

the second order algorithm will be compared to the first order to

study speed and convergence properties. One known drawback of the

second order multi-variable algorithm is its requirement to invert

a Hessian matrix. In general, the matrix may not be invertible, or

may be too time consuming to invert repeatedly for every iteration.

Should this be the case, either the first order algorithm will be

temporarily re-employed, or an approximation will be made using

only the elements lying alona the principal or major diagonal (Le

Cun, 1989). Once the algorithms are tested on the polynomial(s),

tt 2y will be applied to various sizes of two layer networks to

observe how well convergence takes place.
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Figure 1, Error Function with Two Local Minima

The next phase will address the problem of error prediction

and nodal reduction. As previously stated, a Taylor series along

with the weight's first and second order information about the

current value will be used to predict the amount of error when a

weight is removed (i.e., set to zero). Since the higher order

terms in the series expansion will not be computed, the Taylor

expression is valid only for a small neighborhood about the current

value. In other words, weights whose current value are already

close to zero are the only candidates which will likely produce an

accurate error prediction. See figure 1. The further away the

weight is from zero, the more likely the Taylor series estimate

will be in error due to the nature of the function and changes in

its concavity. This limitation appears to severely restrict the

number of weights which may be candidates for elimination. Should

the training algorithm converge to a local minimum having weights
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all with values much larger than zero, then the error estimate

obtained with the Taylor series approximation will be highly in

doubt. To counter this, careful attention will be devoted to ways

of increasing the number of weights with values in the neighborhood

of zero during the training process. Once the weights are chosen

and their errors are calculated, the network will be pruned by

eliminating those weights which have a very low relative error.

Various size networks will be tested with the error prediction

technique. Each will be trained to solve the XOR problem. This

problem was chosen because it requires no more than three nodes -

two hidden and one output to reach a solution (Rogers, 1990).

Since the minimum network size for this problem is well known, it

appears to be an excellent bench-mark for testing the effectiveness

of the reduction technique.

The following recipe will be used to prune the network and

determine its essential weights:

(1) Train the net using both first and/or second order

algorithms while trying to maximize the number of weights in the

neighborhood of zero.
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(2) Using only those weights in the neighborhood of zero,

make a prediction of the amount of error which would result when

the weight is eliminated - set to zero. Make the error estimate

using a Taylor series along with the first and second order

information for the weight's current value.

(3) Retrain the net with the weights removed, and compare the

error with the predicted error.

(4) Repeat steps (2) and (3) as necessary until the desired

size net is achieved, or the error is unacceptable.

Thesis Organization

This thesis is divided into four chapters. The first chapter

provides a brief introduction of the topic along with a problem

statement and methodology. The literature review in chapter two

consists of a presentation and review of material which has been

published in the field relating to the problem at hand. Chapter

three, the analysis and results, is comprised of a presentation and

discussion of the equations and algorithms used along with the

results of the research. The fourth chapter provides a conclusion

and summary.
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II Literature Review

Background

Neural networks have a unique ability to quickly solve complex

problems ranging from object identification to speech recognition.

They appear to offer a decisive advantage over other classical

methods such as auto-correlation and Fourier analysis. These

latter techniques can sometimes require many intensive and sometime

repetitious calculations over vast amounts of data before reaching

a solution. A trained neural net, on the other hand, can render a

decision almost immediately when presented with the input data

(i.e., feature set). In the case of pattern recognition, the

feature set could include such characteristics as an object's size,

shape, color, or aspect ratio.

One important but basic question which still remains largely

unanswered pertains to the network architecture. How large should

a network be for it to properly recognize an object, or make the

correct decision? How many hidden layers and nodes are required?

How should the hidden layers of a net be interconnected? Although

rules of thumb and past experience have played key roles in network

design in the past, a more disciplined method would be very

desirable. For example, optimizing the size of a net could allow

network engineers the means to design and build neural networks no
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larger than is required to solve a particular problem. Not only

can smaller nets be more economical to dezign and construct, but

they can provide real ben f t i trms of their operating ity.

Smaller nets not only learn faster, but require less training

examples. Generalization is another factor which can be influenced

by the network architecture. Generalization is a term used to

describe a network's ability to correctly respond to new input data

which it has not been trained on. That is, the new data is not

contained in the training data. Le Cun showed that networks which

contain too many nodes and interconnections tend to generalize

rather poorly (Le Cun, 1990).
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Explanation and Description

Neural networks can b quite 1Arp rnn t-inf of mAny layers

of interconnecting nodal neurons. These networks can be

constructed via software or hardware methods; however, software

methods offer greater flexibility at the design level making

changes much easier to implement. Figure 2 shows a typical feed

forward network comprised of nine nodes and their interconnections.

These nodes are arranged in three layers with the bottom and top

layers providing the inputs and outputs of the network,

respectively. Since only the top two layers have summing nodes,

the net is referred to as a two-layer network. The bottom layer

nodes serve only as inputs to the network. The middle layer is

called a "hidden" layer since it is sandwiched between two other

layers and its outputs drive the inputs of the layer immediately

above it.
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Figure 2, Typical Neural Networ'k ,cze

Notice that each layer has multiple input and output connections.

For each layer, input connections are situated at the bottom of the

node; whereas, the output connections are located at the top. Nets

of this type are referred to as multi-layer perceptrons. A3so

notice that each interconnection has a weighting factor (i.e.,

weight) associated with it. See figure 3. The weight is a numeric

value assigned to each interconnection which determines the

influence or gain of a particular connection. One input connection

is assigned an input value of one, and has a weight associated with

it known as the bias. This combination provides the summing node

an offset allowing its output to vary as needed independent of the

other inputs. It is analogous to the DC component in a Fourier

transform.
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Figure 3, Typical Neural Node

The output nodes of a network relate directly to the number of

classes the net is asked to distinguish. For example, if a net

were designed to recognize one object from a set of 10, the net

could be designed with 10 outputs - one per object. Typically, a

network recognizes an object by setting the output corresponding to

the found object to a value of one, while setting all other outputs

to zero.

In order for a network to correctly respond to a given

problem, it must first be trained. Training is the process by

which the weights of a network are calculated and assigned values.

It is their values which make a net respond to a specific input

stimuli, and allow it to map the input data to the desired output

classification. The values assigned are unique and relate

directly to the task at hand. However, determining the values for
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the weights is a non-trivial problem. Various different training

algorithms have been formulated with the Back Propagation (or error

correction) algorithm being the most widely used (Werbos, 1974).

This training algorithm requires one to apply the known input

features to the network, and then perform an iterative computation

to determine the network's weights. This process begins by

initializing the weights (e.g., some random number), then have the

net calculate the outputs. The calculated outputs are compared to

the desired outputs, and any differences or errors are used to

generate a new set of values for the weights. The process is then

repeated using the new weights, and continues until the desired

output error is achieved. Once the iterative process is complete,

the network has learned which weights to use for the given problem.

Justification

The reason for this literature review is to present a brief

overview of the work conducted by other researchers which may

contribute to solving the network reduction problem. Also, to

understand the problem, one must first have knowledge of the

current research in this field. Certainly, it would be helpful to

examine reduction techniques applied to other areas of the network

(e.g., feature input space), and determine whether the same

techniques may be applied to reduce the number of nodes and
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weights. One critical question which will be explored is what

happens to a network when its nodes are removed. Can it still

continue to operate effectively? If not, what performance factors

are degraded, and in what way? How will the net's ability to

generalize be affected? Another area of concern deals with the

training algorithms used to determine the weights of the network.

Since each node is fed by a set of weights, a node might not be

needed if all weights feeding the node have very small values

approaching zero. By examining the training algorithms, it is

hoped that the network could be pruned while it is being trained

(i.e., reduced on the fly).

Scope

This literature review will focus on areas which concern

themselves directly with neural networks. Also, since the problem

is to reduce the size of the network, it is important to examine

any network component or factor which directly or indirectly

affects the quantity or behavior of the weights and nodes. This

includes both input and output parameters, as well as training

algorithms. Each is hoped will lead to solving a bit of the

puzzle.
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Methodology and Organization

This literature review will begin by presenting information

which describes how a network operates, and how the number of nodes

affect the net's recognition process. It will also include a

discussion of factors which are known to determine the number of

input and output nodes. After addressing network generalities, an

examination of the some of the more popular training algorithms

will be presented. This discussion will look at some of the

current techniques used to generate values for the weights in the

network.

Discussion of the Literature

Designing and constructing smaller size neural networks lends

advantages in reduced construction costs as well as training time.

How large a network should be to solve a given problem is only

partially understood. Sizing the number of nodes for the input and

output layers is known to depend upon the I/O environment. For

example, the number of input nodes relate directly to the number of

input features. The more input features needed to distinguish a

particular class or object, the more input nodes are required. The

problem of determining which features are essential and which are

not was studied by Ruck. He presented a method which was able to

distinguish between essential and non-essential features (Ruck,
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1989). As a result non-essential features could be discarded,

which in turn eliminated input nodes and reduced the size of the

net's input layer.

The number of output nodes of a network is dependent upon the

number of classifications (e.g., objects) the net is asked to

recognize. Each classification requires one output node. As in

the case of the input nodes, the output nodes have a one-to-one

relationship.

Little is known about how to determine the number of hidden

layers, or for that matter, the number of nodes in the layer.

Presently, many engineers and designers use rules of thumb, or

trial and error methods. Although nets designed in this manner can

operate quite acceptably, they can contain weights and nodes which

appear to be non-essential. Tarr was able to demonstrate this, and

show that some nets contained nodes within the hidden layers which

appeared to contribute little to the net's problem solving ability

(Tarr, 1988). He also discovered that as certain inner nodes were

removed from the network, the net could still continue to perform

satisfactorily.

Various algorithms have been formulated to train networks.

Each have their advantages and disadvantages. Some are faster

while others not as precise. Still others fail to converge to the
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set of weights which provide the minimum output error. Much of the

research on neural networks is focusing on these problems.

Chiueh's paper is an excellent source for training algorithms

(Chiueh, 1988). He discusses many of the more common algorithms

used for training neural nets. Although the Back Propagation

algorithm is perhaps the most popular training algorithm due to its

simplicity, it is by no means perfect. Not only may it require

many thousands of iterations to train a net, it sometimes fails to

converge to the correct set of weights. Becker showed a way to

improve the convergence properties of the back-prop algorithm. Her

technique involved the use of second order methods which promised

a reduction in the number of iterations with only a small increase

in computational complexity and trainir, - ,Fecker, 1989).

Singhal and Wu decide' to annly the Extended Kalman filtering

algorithm and test its training ability on multi-layer perceptrons

(Singhal, 1989). The Kalman algorithm works by approximating a

linear region around the current estimate within the non-linear

field. This linear region is updated as new estimates are

calculated until the change (or error) is very small. Singhal and

Wu tested the algorithm on two classic problems, the XOR and Meshed

Disconnected regions. The results were then compared to those

obtained using the back propagation algorithm. The number of

iterations for both algorithms was limited to a maximum of
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approximately 2000, with the error calculated using the root mean

square error over all the training data.

Singhal and Wu claimed the Extended Kalman algorithm trained

in just a "few iterations". Their results showed that the Kalman

algorithm achieved a lower error after 5 or 10 iterations than the

back-prop achieved after 2000. However, one must be careful in

drawing any overall conclusion from this. First, the Kalman

algorithm was tested and compared on only two sets of training

data, and the size of the net used was relatively small compared to

those used to solve more complex problems such as speech

recognition. How well a complex net would train using an Kalman

algorithm is yet to be seen. Second, although the Kalman trained

in fewer iterations, the number of calculations requir2d for each

iteration was much more intensive than that required by the back-

prop. Therefore, when comparing training times, the advantage of

the Kalman algorithm diminishes (Ruck, 1990).

It is not fully understood why a given training algorithm

sometimes fails to converge; however, convergence can scmetimes be

achieved by changing the number of input parameters or the size of

the net. Also, an algorithm may fail to converge if the initial

values assigned to the weights were inappropriate. Convergence can

sometimes be achieved by assigning a new set of weights to the net

and running the algotithm again. Wang has studied this problem and
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proposed a traininc algorithm which exhibits strong global

convergence properties for varying network sizes and configurations

(Wang, 1988). His algorithm uses both first and second order

derivatives to ensure convergence. However, sometimes an algorithm

can converge to a local minimum rather than a global minimum. Baba

suggests that perhaps the Matyas and its modified algorithm might

be applied to the back-prop error function to ensure a global

minimum (Baba, 1989). But again, these techniques appear to be at

the expense higher complexity and longer training times.

Ahmad and Tesauro were attempting to gain some insight into

the relationships between the size of the net, the number of

training patterns, and their effect upon the net's generalization

ability for various changes to the inputs (Ahmad, 1989). Their

results showed that for a given network size, its ability to

correctly respond to a set of inputs was proportional to the number

of training sets. They found that th! failure rate decreased

exponentially as the number of training sets applied to the net

increased. Ahmad and Tesauro also found that the failure rate was

approximately constant for a given number of training sets even

though the number of inputs varied. This may have been due to the

somewhat boolean-like linear function the net was being trained to

respond to. Whether the relationship is true in general is

unknown. Also, they reported that a "minor" change to the input

produced a significant change in the net's performance. It was
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also stated that the specific training patterns used had a large

influence on the net's final weights and its ability to generalize.

Although their work was not conclusive, it did provide some

addition insight into the relationships which affect training.

Their mathematical analysis presented may be a basis for further

research.

Some researchers have already begun looking at ways to reduce

or optimize the size of neural networks. Le Cun, Denker, and Solla

published a paper which examined the use of a second order

technique to reduce the number of nodes and weights in a network

(Le Cun, 1990). They presented a "recipe" which describes how to

perform the reduction. Their results appeared to show that the

second order technique to be quite effective - at least for the

given problem (recognizing hand-written characters). However, the

results may not be true in general. The method they used to

calculate the inverse matrix was an approximation which ignored the

off diagonal terms. This approximation is based upon three

assumptions, of which the failure of any one, invalidates the

approximation. Although the general methodology presented appears

valid, further study may be needed before the technique should be

applied to nets in general.
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Sietsma also studied ways to prune nets and their effect on

generalization. She states:

The ability to generalize, to give correct outputs for
inputs not in the training set, is probably the most
important strength of artificial neural networks. At
the same time "good generalization" is difficult to
define. ... If the training set does not adequately
define the classes, the networks may generalize in a
way which is very "reasonable" but which is not what
was intended or desired by the experimenter (Sietsma,
1990).

She continues by saying that she found that nets which were pruned

(or minimized) are frequently plagued by local minima when

undergoing training. It was unclear what she meant by this since

the training process is meant to converge to a local minimum.

Supposedly, she was referring to the situation where the training

algorithm converged (or appeared to converge) to a local minimum

where the error was unacceptable.

Ishikawa took a different approach to the minimization

problem. He suggests the problem of minimization can be best

overcome by the use of a new training algorithm, a structured

learning algorithm. He states that although the back-prop

algorithm is simple and popular, it suffers from two serious

drawbacks. First, it requires the designer to draw up an initial

model of a network prior to reduction. This model is generally

developed by trial and error methods, or rules of thumb based upon

past experience. The designer almost needs some prior knowledge of

the network - something which is not available in many instances.
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The second problem which Ishikawa discusses is the difficulty one

has at interpreting the meaning of the nodes in the inner (or

hidden) layers. Since the network is modeled in a non-structured

manner, the nodes in the inner layer have a meaning to the net, but

may have no direct interpretation to humans (Ishikawa, 1989).

Conclusion

The problem of determining the number of nodes necessary for

a network to solve a given problem appears to depend significantly

on its initial architecture and training algorithm. Portions of

the architecture consisting of the input and output layers can be

analyzed to determine the required number of nodes. The number of

input nodes depends on the number of input features representing

the input data. Reducing the object's feature set can reduce the

number of input nodes. On the other hand, the number of output

nodes depends upon the number of objects or items the network is

asked to classify. When asked to differentiate and recognize a

large number of classifications, both the network and the feature

set can be quite large. However, determining the number of nodes

lying in the inner layers of the net is for the most part an

unsolved problem. An analysis of the training algorithms may hold

the key to understanding how to determine which inner nodes are

essential. The training algorithms determine the weights, and the

weight's value determine the importance of a node to the network.
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III Analysis and Results

Network Equations

Since a Taylor series will be used to make an estimate of the

error when a weight is nulled, we begin by deriving the equation

which expresses the error as a function of the weights. This is

done by generating the equations at each layer, beginning at the

top, and continuing down to the lowest layer in the net. Although

this derivation is for a 2-layer network, the process is the same

for a network composed of any number of layers. We begin by

defining the total network error over all training samples to be:

(1)

E ( W) EP
p= 1

where

ET is the total error
EP is the input pattern error

are the weights.
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Now, the pattern error is the difference between the net's

calculated output and the desi,-ed output for a specific input

pattern. Notice, however, that if the pattern error is always

greater than or equal to zero, then the total error can be

minimized simply by minimizing each pattern error. To ensure the

pattern error is non-negative, we define the error for the pth

input pattern to be:

(2)

E K 1Dk- Y2k)2"

where

Dk is the desired output
Y2 k is the 2nd layer output

K is the number of 2nd layer outputs.

Defining the pattern error in this manner provides another

advantage which will be exploited later, namely the derivative is

simpler.
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Working uown from the top of the net, the equations at each

layer can be derived. For a particular kth output the expression

is:

(3)

Y2k = fk(S 2 k)

where

S 2 k !Ls Le 2nd laye-f Sutdaatliol Output
fk is the 2nd layer function
Linear:

fk(S2k) = S 2 k
fk(S2k) 1
f4 1 (S2k) : 0

Sigmoid:

k(S2k) = (i+ es~k)
-

fk (S2k) = f(S2k) -fk(S2k)

fk(S2k) f fk(S2k) -2 f4 (S2k) fk(S 2 k)

For a Cybenko network, the linear function is used in lieu of the

sigmzid (Cybcnko, 1989).
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Next, the equation which expresses the output of the kth

summing node in terms of its inputs is:

(4)
J

S 2 k = Y W2 jkYlj
j=1

where

vv'c'j, k  LIS L-Li "In lay . w . h-1

YIj is the 1st layer output
J is the number of ist layer outputs.

Now, the ingredients are on hand to express the pattern error as a

function of the 2nd-layer weights. Combining the last three

expressions gives:

(5)

EP= - Dk-fI W2j3 kYJl
k= 1
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Next, the partial derivatives for the error pattern with

respect to a 2nd-layer weight are computed. The first partial

derivatives can be derived by using the chain rule:

(7)

aEp BE, d Y2, aS2k,

aW2jk -= 3Y2a dS2 BW2j,k

Since

aS o f or k
aW2j, k

then (8)

aEp d Y2k BS2k
-- 2j,k  Y2 k  dS2 k  6w2 , k

where aEp _ Y2 k - Dk

dY2k

dY2k- fk(S2k)
d S2 k

BS2k _

BW2j, k

3-5



Also, the second partial derivatives for the 2nd-layer can be

derived using the chain rule along with product rule:

(9)

aE- _ ,Ea 2 Ep d Y2k aS2k aEp a Y2k aS2k

aW22,k BW2j,kaY2k dS2k aW2Jk aY2k aW2j, kaS2k oW2jk
+ aEp d "2 k a2S2k

BY2k dS2k aW2 ,k

where

a S 2 k

aW2 k

a2 y2k - d 2 y2 k S2k = f(S2k) Yij
BW2jks2k dS2k jW2,k

2Ep a_ 2 Ep dY2k S2k f./IS2k)Y .
aW2j,kaY2k aY22 dS2k aW2jk

After substituting and simplifying, the partial derivative

equations for the 2nd-layer finally become:

(10)

wEP = (Y2k-Dk) fl(S2k) Yi1

and

(11)

a 2 E 2 fl2 fII-D

-W2 I yi 1  fk(S2k
)  + YI17  fk(S 2 k) (Y2k-Dk)

j,k

3-6



Deriving the error expressions for the bottom layer is

performed much like it was for the top. The equation expressing

the jth output of the 1st-layer is:

(12)

Y1I = fj(Sij)

where

S!, is the Ist layer summation output activation
L j L~I~ ibL . aY~.1~ .~ Ua.~~LILLI J L L UI L. L Lj

Sigmoid:
fj(Slj) =(l e (1 -

fj (Sl 5 ) = fj (S15) -2 (s )f l!(5 5  = f (SI -) -2 f'(l ) E~~)

The equation which expresses the output of the jth summing node in

terms of its inputs is:

(13)

S'I= E Wli,jXii

where

W1,j is the ist layer weight
X1, is the input
I is the number of inputs.
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The final equation which expresses the pattern error as a

function of both the weights and the input can now be formulated.

It is found by back substituting the last two expressions into the

ist-layer equation.

(14)

E (w4

S kz=d 23-8
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The partial derivatives for the pattern error with respect to

a 1st-layer weight can now be computed using the chain rule. The

first partial derivative becomes:

(15)

aE K aE dY24 aS2.. dY! aSl
ip k=1 3=1 aY~k dS 2 k aYi dsI awl_!"

Since

OSi - 0 for j j
awli, j

then (16)

aEp _ K aEp dY2k aS2k dYlj 8sI,
wl, kI- aY2k dS2, aYI. dS:. awl,_

where

aS2k
ayl YJ i k

d Y-

aS1w _ xli"

awli,j

The remaining partial deriva -res were previously computed.
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The second partial derivatives for the 1st-layer can also be

derived. (17)

a2 
±' a 82P P a-Y2k

awl 2 ' awl. .3Y2, B2P 4 Wi .Bs2k 4

PP2 a 2S2k P4P i 2P 2y1.
1 w,,l P- P5 PPP awi .a.c3 1

+ P1I P, P3 P4 a
2 Sl3

where:

a2 si 0 -

a d2Yl. dsi _f(1)7

3 - ' S -7.)X
wli1 jasi ~ 2S awl,2.3

a 2 S2 k -o

a2 Y2k -d
2 Y2k aS2k dYi~ dsi = f~l (S2k)W 42 7 kf (S1.)X1.

aWI~S2k 2S Y1J dS1 a Bw1

a 2 EP 32EP dY2A aS2k dY1j aSij f

Pi Bk =Y 2 k Dk

P2 dS2 k f Sk

____ = W2

3 dl j,~ k ''

P5 = awl, 1.
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After substituting and simplifying the above expressions, the

partial derivative equations for the 1st-layer finally simplify to:

aEp K

awl_, -E (Y2k-Dk)ffk(S2k) W2jkfSlX1i

and
(19)

a2E K ,, 
2

ij k=1

+~~~~ y2Dy"(zf'(Sl 2 -/2-(Y2k-mk ) fkll(S2,) fj (S R h,. XI1

+ (Y2k-Dk) f /(S2k) fjl(S1) W2 4 kX1i
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Taylor Series

This research will use the Taylor series in two important

areas: (1) the training algorithm and (2) the error predicting

function. The Taylor series for a multi-variable expression is

defined as:

(20)

EI(W) E E (r)+( T VEp(C)+I( ) T E'( ) ( - +. .
2

where

are the weights W2 j,k; Wli, j

W0 is the current value of w

VEp( 0 ) is the gradient of EP evaluated at

V 2EP() is the Hessian of EP evaluated at

To train a network, an algorithm is chosen which will find the

set of weights which will minimize the error. First impressions

might lead one to believe that finding a root of the error function

will provide the correct set of weights. However, notice that the

error expression is never negative, and additionally, there is no

guarantee the error function will ever be zero for any set of

weights. Therefore, a better algorithm to use is one that searches

for a local minimum. Essentially, this process can be viewed as an

unconstrained minimization problem.
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Most algorithms which find a root of a function can be used to

search for a local minimum (or maximum). Elementary calculus tells

us that for a differentiable function a local minimum must occur

where the first derivative of a function is zero. Hence, searching

for a root of the first derivative will either provide a minimum or

maximum. Newton's method is one such algorithm which can be used

to search for a root. It can be easily altered to search for a

minimum or maximum. The algorithm has its origins with the Taylor

series, and uses only the first few terms of the expansion to

approximate a function near a point. By applying the algorithm

iteratively, it may cr may not converge depending upon the nature

of the function and initial conditions.
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Using the Taylor series to approximate a multi-variable function

(e.g., error function), Newton's second order algorithm for finding

a minimum or maximum is derived as follows:

(21)

EV() = E(W) + § T VEP0) + !TV 2 E, (
2

Since

VEP(W l ) = 0 at a maximum or minimum point,

then

EV (1 0 ) +V2E(F 0 ) j

or
(22)

: -[V 2 EP(Wo)]1' VEP<o 0) where S = WV-a
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Notice, this algorithm requires the inverse of the Hessian matrix -

a time consuming task. Furthermore, there is no guarantee the

matrix will be invertible. Le Cun's method uses a slightly

different form of the algorithm. It ignores the off diagonal

elements of the Hessian, and treats it as a diagonalized matrix.

Hence, the inversion is much simpler and faster (Le Cun, 1989).

Using this Hessian approximation, the algorithm can now be

expressed in terms of one weight along with its first and second

order information:

(23)

a3E

Jw2

This algorithm provides the foundation for the first and second

order back-prop training algorithm. With a slight modification it

can be used to search for a minimum by forcing the algorithm to

"follow" the direction of the negative gradient.
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This algorithm (24) is referred to as a pseudo second order back-

prop, hereby referred to as simply the second order training

algorithm:

(24)

aw I
W, WO a 2 E r WOaw (Wo)

a w2

The first order back-prop is merely a degenerate form of this. It

still uses the first order term, but instead utilizes a constant

(eta inverse) to approximate the second order term:

(25)

aw
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Convergence Analysis

In order to achieve the stated goal of network minimization

through error prediction, it was necessary to examine the back-prop

training algorithm(s along with their convergence properties.

This was essential if the number of weights with final values close

to zero were to be maximized. After all, it is the training

algorithm which determines the final values for the weights as it

searches to minimize the error function. Should the algorithm have

poor convergence properties in the vicinity of zero, it may diverge

and/or converge to an entirely different set of weights far removed

from zero, thus presenting less weights as candidates for error

prediction.
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Recall from the earlier discussion, that a Taylor series

truncated after just a few terms can only approximate a function.

The series is most accurate in the neighborhood of the current

weight value. Attempting to interpolate beyond this neighborhood

increases the chance of error, and can give an incorrect evaluation

of the function. Applying this fact to the problem at hand, namely

predicting the error when a weight is set to zero (i.e., nulled),

presents a major problem. Suppose a network is trained (error is

minimized), and the local minimum is such that all weights have

values much greater than zero. This would result in a situation

where the Taylor series would not give an accurate estimate of the

error when a weight is nulled. It is certainly possible that there

may exist another local minimum which does have one or more weights

with values close to zero. But, how do we find it? How do we

minimize the error function while at the same time maximizing the

number of weights in the neighborhood of zero?

The first attempt at maximizing the number of weights in the

vicinity of zero revolved around the question of whether

initializing the weights to values close to zero would increase the

number of weights with final values close to zero. The answer

seemed to be a qualified yes, provided the value(s) were within an

interval of convergence. However, should this not be the case

(e.g., close to an inflection point), then the algorithm could

diverge to another set of weights far removed. To test this
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hypothesis, a two-layer network (15 hidden nones) was trained to

solve the XOR problem using the first order training algorithm.

First, it was trained using initial values uniformly distributed

between -5.0 to 5.0, -3.0 and 3.0, -1.0 and 1.0, and then finally

between -0.5 and 0.5. After the network was trained the weights

were examined to determine how many had final values between -1.0

and 1.0. The results are tabulated below.

Table I. Weight Value and Count

Initial Weights Number of Weights
of Weights Between -1.0 and 1.0

-5.0 to 5.0 5
-3.0 to 3.0 6
-1.0 to 1.0 8
-0.5 to 0.5 7

The results were inconclusive, but they did appear to show

that when the weights were initialized with values close to zero,

the chances of having weights with final values close to zero were

increased.
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F(x)

iI I
A X B

Figure 4. Pt A is "Closest Minimumm" to Ft K

In hopes of further increasing the number of weights close to

zero, the convergence properties of the training algorithm(s) were

examined. For this analysis it was necessary to apply the

algorithms to a function with known points of inflection, minima,

and maxima to test how each algorithm was able to converge to the

"closest minimum". The "closest minimum" to a point x is defined

as the local minimum where the function is monotonic for the

interval bounded by a local minimum and point x. See Figure 4. In

other words, even though point B is closer to point x, the

algorithm will have a tendency to converge towards point A due to

the monotonic behavior of the function between points A and x.
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The function chosen to study t-he convergence properties of the

training algorithms was a 6th degree polynomial in w, a weight.

(26)

p(w) = (w-l) (w-2)2 (w-3) (w-4) (w-5) + 10

Like the error function, the polynomial was positive for all values

of w. Although a polynomial in one variable does not approximate

a network error function, it can, nevertheless, be useful for

testing the convergence ability of an algorithm. Certainly, if the

algorithm exhibits poor convergence tendencies for the polynomial,

its ability to converge for a network error function will be

questionable.

The first algorithm tested was the first order back-prop.

With a small value of eta (0.035) the algorithm converged, but its

convergence was very slow (27 iterations) , especially when the

initial value was far from the local minimum. When the algorithm

eventually converged, it did not always converge to the "closest

minimum". When eta was increased to 0.35 the algorithm approached

a local minimum much quicker, but failed to converge. Instead it

had a tendency to consistently overshoot the minimum - bouncing

back and forth. The results of this test showed that the value of

eta had a marked effect on the ability of the first order algorithm

to converge to a local minimum.
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It appeared that a large value of eta was necessary when far

from the local minimum, while a small value of eta ,a r"- ssary

when close to the minimum. To capitalize on this finding, it was

decided to rewrite t.ie first order algorithm to allow for a varying

eta. Eta was initialized to a value of 0.35, dnd its value was

doubled if the sign of the first derivative was unchanged. If the

sign changed, indicating the presence of a local minimum, tuie value

of eta was reduced by 3/8ths. After making this modification, the

first order algorithm was retested. It was found to converge to a

local minimum much faster than before, but it was not always to the

"closest minimum. With the same initial value as before (50) , the

algorithm converged in about half the number of iterations (12

versus 27). These results varied depending upon the initial value,

but in all 10 cases using different initial conditions the

convergence rate was equal or better with the varying eta than with

a fixed eta.

3-22



Next, the first order algorithm with a momentum term was

applied to the polynomial.

(27)

awl

where

W0 is the previous weight
W, is the current weight
W2 is the updated weight
a is a fixed constant.

Again, using a fixed eta (first 0.035 and then 0.35) and an

alpha of 0./, the algorithm failed to converge, but consistently

overshot the local minimum. When compared to the fixed eta

algorithm without the momentum term, it did approach the region of

the local minimum in less iterations. However, the results did not

fair as well as those using the varying eta. One important fact

was observed with all 3 first order algorithms. If the value of

the first derivative was at or near zero, the algorithm either

failed to converge to a local minimum, or converged very slowly.

None of the first order algorithms consistently converged to the

"closest minimum"; therefore, they did not offer much promise in

solving the network reduction problem.
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Next, the second order back-prop was tested using the same

polynomial. Recall the algorithm is:

(28)

aP (W° )

a2 EP O-P (w0) 1

aw2

Notice, the algorithm could fail to converge to a minimum should

its initial value place it at a local maximum (i.e., first

derivavive is zero). Also, notice that the algorithm is undefined

at a point of inflection (i.e., second derivative is zero). To

prevent these events from occurring, a check was performed to

ensure the algorithm was not at a maximum point, and the algorithm

was modified slightly as follows:

(29)

aE
aw w

where e < < desired error.

When the algorithm was tested on the polynomial, the results showed

it to "always" converge to a local minimum regardless of the

initial value. When the initial value was on or near a point of

inflection, the algorithm provided a sequence of weights that moved

to some distant point, but then eventually found its way to a local
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minimum. However, this tendency to "always" converge may be due to

the nature of the poly~iomial rather than a property of the

algorithm itself. At the extremities of the given polynomial,

there were no inflection points between an extreme value of w and

the "closest minimum". Hence, once the algorithm diverged to a

distant point, the algorithm was able to converge to the "closest

minimum" without passing through a point of inflection.

The ability of the second order algorithm to converge to the

"closest minimum" for certain values or intervals of w lead to the

question of whether these intervals could be calculated. If so,

then the algorithm was assured of converging to the "closest

minimum" when it was within an interval of convergence. If the

value of w was outside the interval, then perhaps a different

algorithm (one which did not cause divergence to some extreme

point) could be applied temporarily until entering an interval of

convergence.
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To find the interval of convergence for the second order back-

prop, we first find the interval of convergence for the general

second order expression.

Let

(30)

G(w) = w+S(w)

where

aE
aw (w)S(w) =- ____

a2  w)
a W2

We will call S(w) the stepping function since it describes how much

to increase or decrease the weight w with each iteration. The

sequence

G(w,+,) = G(wn)

is guaranteed to converge if

-1 < G'(w) < 1

Now,

G'(W) = 1 + S'(w)

so the sequence G(w) will converge if

-2 < S'(w) < 0

We will define S' (w) to be the convergence factor.
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For the general second order expression, the convergence factor is

(31)

aEP(w) a P(w)

S' (w) a w aw
3  -

or

a3E (W

S (W) S S(W) -l3

where we approximate the third partial derivative

a3  
2 E P(w )

-' (W) 8w2

()W3  AW
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This expression (32) is also valid for the second order

training algorithm

(33)

aE (W0 )aw

aW2

converges to a local minimum provided

a2EP > 0
a wo

When the proviso is not true, the algorithm can be expected to

diverge, as is the case when W0 is near a local maximum. As we

will show shortly, diverging away from a local maximum does not

necessarily mean the algorithm is converging to a minimum. This

depends upon the nature of the function such as the step size and

distance from the current point w to a region of convergence near

a minimum.
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Figure 5, Monotior-i: Ccneroeno

The above expression (33) is only a sufficient condition for

convergence. Figure 5 shows a stepping function, S(w), which meets

this condition. Its derivative always remains between 0 and -2.

Hence, the sequence G(w) is guaranteed to converge to w..

-1 2

Firure 6. Monotonic & Alternatinq Coverynro
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Figure 6, however, illustrates a stepping function which does

not meet the convergence condition, but, nevertheless, still

converges to point w,. Notice that so long as S(w) remains

situated between the line S = 0 and the line passing through w.

with a slope of -2, then the sequelnce G(w) will converge to w..

Notice too, if S(w) remains between the lines S = 0 and the line

passing through w, with slope of -1, then the sequence G(w) will

converge monotonically to point w,. Should S(w) fall between the

lines having slopes of -1 and -2 and passing through w., then the

sequence G(w) will converge to w. in an alternating sequence.

(These two lines with slopes of -1 and -2 are shown in figu-e 6.)

The rate of convergence depends upon how close S(w) follows the

line with a slope of -1. The closer S(w) is to this line, the

faster the rate of convergence. When S(w) is directly on this

line, then the sequence G(w) will converge to point w. in just one

iteration. For this example in figure 6, it can be easily seen

that the rate of convergence of the sequence G(w) varies

considerably. In summary, so long as S(w), is between the lines

with slopes 0 and -2 the sequence G(w) will converge.
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Figure 7. S(W) for Typical Polynomia!

Figure 7 shows S(w) for some polynomial. Observe how S(w)

extends outside the region of monotonic convergence defined by

S(w) = 0 and line(s) whose slope is -1. This occurs whenever the

function S(w) is undefined or in the neighborhood of an inflection

point. Also, note the value of S(w) is zero at all minimum and

maximum points. However, for certain intervals of convergence it

can be seen that S(w) is converging quite slowly (i.e., not very

near to the line whose slope is -1). This is most pronounced at

the extremities of the given polynomial. It is also quite possible

that this may be the same situation for an error function. If so,

its rate of convergence could be very slow for very large values of

w.
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It appeared that this problem might be solved by increasing

the step size, S(w), beyond the calculated value. If successful,

then the algorithm could converge to a minimum much faster. The

term used to describe this increase is hereby referred to as an

over-acceleration term. However, one must be careful when over-

accelerating the convergence of an algorithm. If the increase is

excessive, then the algorithm will over-shoot the minimum and may

fail to converge. This could be especially disastrous since we

desire the training algorithm to find the "closest minimum" to some

point w in the neighborhood of zero. Since S(w) generally

indicates the closeness to a local minimum, it can be used to

inform us when to over-accelerate. Therefore, over-acceleration

will be used only when S(w) is large (i.e., greater than 10), and

then only if the result causes the function to decrease in value.

(If S(w) is large, we can assume the minimum is far away.) Over-

acceleration will not be used whenever w is near zero, regardless

of the value of S(w). It was decided to use the following

expression to increase the step size.

(34)

(w ,) S(wo) ; IS(w0)I io 1

where

S(wj) is the step update
S(wo) is the current step
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This expression was chosen because it generates a small

increase in step size when the calculated step size is small, and

a large increase in step size when the calculated step size is

large. The principal advantage of over-acceleration is, when

successful, it can save a number of iterations. However, it does

require a small amount of additional time to calculate and test -

a small price to pay considering the potential savings.

Over-acceleration was incorporated into the second order

algorithm and applied to the given polynomial with very good

results. When the weight, w, was initialized far from a minimum,

over-acceleration reduced the number of iterations by factors as

high as three.

Now, that the convergence factor S' (w) could be calculated and

used to tell whether the general second order algorithm was within

a region of convergence (i.e., converging to the closest minimum),

the next problem was how to best increase the number of weights

with values in the neighborhood of zero, thereby increasing the

number of candidates for pruning.
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The error function could be slightly altered as follows to help

achieve this end (Oxley, 1990):

(35)

EP= 2 Dk-f( W2jkfJ W1 1Jij + _ T + 0T g7)
k= 1= = ( - i

where N is the iteration count.

The additional term added to the original error function is a

weight adjustment term. With the inclusion of the weight

adjustment term, the weights will be minimized along with the

original error function. Using the factor 1/N, will ensure the

weight adjustment term has less and less effect as the iteration

count increases. For large N the term is essentially zero leaving

the original error expression.
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In addition, including the weight adjustment term causes the first

and second partial derivatives to change to the following:

aEP (Y2k-D k ) f(S2 k ) Y1I + 2 W2j k

aW2jk k NV

a2E y / 2
-=Yl

2 fk(S2k) 2 + Ylj k(S2k) (Y 2 k-Dk) + -

,k N

awi1p = (Y2k-Dk) fl (S2k)W2j k f(S1J)Xli + W1-/N 2
i~j kzi ' N '

a2E P K

=___ E f(S2k) ffS19j) W2Jk X1'
i ,i k=1 2 X12

+ (Y2k-Dk)ffk1(S2k)f3(S1j)2 W22, ki

(Y2 k-Dk) f' (S2k) f{(Sli) W21, k X7

+ 2
N

To test the effectiveness of the algorithm which includes the

weight adjustment term on finding weights with values close to

zero, the modified error expression was applied to the polynomial.

The results showed the algorithm consistently found the minimum

nearest to the origin.
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However, concern still remained about how the algorithm with

weight adjustment would fair when encountering a point of

inflection. Should this occur when N was very large, it is

doubtful that the weight adjustment term would be able to have any

effect towards "pulling" the weights back towards the origin.

Also, another concern still existed. Should the weights be in the

neighborhood of a maximum, divergence may cause the algorithm to

overshoot the nearest minimum. These problems still required

further study of the convergence properties of the second order

algorithm.

Now, when the absolute value sign was imposed on the

denominator of Newton's second derivative expression, it changed

the algorithm such that it would only enter a region of convergence

when nearing a local minimum. It will diverge elsewhere. The

underlining question here is, can the algorithm be made to diverge

in a graceful manner when it is near a maximum point or point of

inflection? In other words, is it possible to control the rate of

divergence away from these points so that the algorithm is

migrating in a well behaved manner toward the "closest minimum"?

If so, how do we control it, and for what value of w do we impose

the control? If that value could be estimated, then perhaps a

different algorithm could be temporarily employed until it enters

a region of convergence defined by S'(w). Once this region is

3-36



entered, then the second order algorithm could be re-employed until

convergence is achieved to the minimum point.

To answer these questions, we examine three cases of possible

minimum/inflection/maximum conditions. The first of these is the

case where the inflection point is midway between the minimum and

maximum points. This is illustrated in figure 8.

S(VW - 1 1

ax Irif rin

Figure 8 Inflection Po tr - Vase 1

When the algorithm is near the maximum point, it diverges away

in the direction of the minimum. It continues to diverge with each

iteration until it reaches some value of w where it is no longer

monotonically approaching the "closest minimum". In figure 8, this

point is where S(w) is above the line whose slope is +1.

Therefore, if the algorithm is controlled by allowing it not to

continue once S (w) = 1, then the algorithm will not have overshot
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the minimum point. By using either the previous step size or a

step size based upon the desired resolution, one could iterate past

the inflection region into the interval of convergence. (Note:

Desired resolution is the minimum distance between two adjacent

minima one hopes to resolve.) Once S' (x) is between 0 and -1,

Newton's algorithm could be re-engaged and allowed to converge to

the minimum point.

Figure 9 illustrates the second case. This situation shows

the inflection point lying closer to the maximum point than the

minimum. Again, by choosing w where S (w) = -, it can be seen that

the step size will not cause the algorithm to overshoot the minimum

point.

S\A) -1 +

"\/

/ Kiax n

/' -", : Inf r.!n - - -

Hiure 9. lnflectin Point Case 11
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Like the first case, once S' (w) > 1, either the previous step size

or a step size based upon the desired resolution could be

instituted. This step size could be maintained while transversing

through the inflection region until the convergence factor, S' (w),

has a value between 0 and -1. When this occurs, then Newton's

second order algorithm could be re-employed until convergence is

achieved.

/

// \

In,"/Max Inf Mmli "

/'

Figure 10. Inflection Point - Case III

The third and i.ast case is shown in figure 10. In this

instance the inflection point is closer to the minimum. The

situation here is different than the other cases because choosing

the value of w where the convergence factor S' (w) = 1 may now cause

the algorithm to overshoot the "closest minimum". Furthermore,

this could occur for any w where S' (w) < 1. The closer S(w)
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follows the line whcse slope is +1, the quicker the algorithm will

diverge and the more likely it will overshoot. The converse is

also true. This can be readily seen if one visualizes possible

intervals where S' (w) = 1 for different S(w). (Note: S(w) must be

monotonically increasing on the interval bounded by the maximum

point and the point of inflection.) In addition, the nearer the

inflection point is to the minimum, the more likely the algorithm

will overshoot it. Unfortunately, there is no value of S(w) that

will guarantee convergence to the closest minimum for every error

function under these circumstances. One possible solution would be

to use a step size based upon the desired resolution during the

entire interval when the error function is in a region of a maximum

or point of inflection. However, this "brute force" method would

be quite slow especially when the desired resolution is small. The

best alternative appears to be to the same as outlined above for

the other two cases. That is, use Newton's algorithm until the

convergence factor S' (w) is greater than one, then use either the

previous step size or one based upon the desired resolution. The

step size would be held constant at this value until reaching an

interval of convergence where the convergence factor, S' (w), is

between 0 and -1. This is perhaps the best we can hope for under

this situation. Many error functions, in particular those with

slow rates of divergence, may very well indeed converge to the

"closest minimum". But again it's important to emphasize the
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convergence is not guaranteed. Much depends upon the nature of the

error function and the relative distances of the critical points.

Recapping, to increase the chances of convergence to the

"closest minimum", Newton's second order algorithm will be used so

long as the magnitude of the convergence factor, S' (w) < 1. When

the convergence factor is greater than or equal to one, the

previous step size or one based upon the desired resolution will be

used.

To test this algorithm, it was applied to the polynomial to

observe how well it converged to the closest minimum for various

starting values. (The weight adjustment term was not used during

this test.) The results showed that the algorithm consistently

converged to the "closest minimum" even when the initial starting

value was near a maximum or inflection point. However, it must be

pointed out that the ability of the algorithm to consistently

converge to the "closest minimum" for any starting value of w, may

be due to the nature of the polynomial. Other polynomials may not

necessarily give the same results depending upon the positions of

the inflection points relative to the minimum and maximum points.
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Error Predicting Function

Now that the algorithm is formulated that will minimize the

pattern error having weights close to zero, the ons last item which

will be derived is the error predicting function. This function

will be used to predict the change in pattern error when a weight

is removed (nulled). Beginning with a few terms of the Taylor

series:

(36)

T

E,(W1,) E,(W0O) + §7VE(W-) + -S 17- E (Wj)s
2

where

S = jW

Now, let

A EP = EP (WI) - H (PIG)

then (37)

AE ES T VE( W E ) + 7TV2E,
p p0 2
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Notice that the gradient will be approximately zero at a local

minimum. Therefore, the expression can be simplified to:

(38)

E 2 V2E (F 0 )§

Ignoring the off diagonal terms of the Hessian matrix, the error

predicting function can be further simplified to:

(39)

AEP = ,W (Wo

where

S~n W (:7) o0:,)

When on-y one weight is nulled, the expression becomes

(40)

AE ___jO)S

where

SWW -w o
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Network Reduction

Various size neural networks were constructed to test the net

reduction technique on the XOR problem. The first net constructed

was comprised of a 10 hidden nodes. The output node was configured

for a sigmoid output. The net was trained to a total error of 0.01

or less over all training samples. When the net was first trained

using the first order algorithm, a total 4 weights were found to

have values between -1 and 1. Next, the second order algorithm

with relaxation was employed. Not only was the weight adjustment

term included, but the program included a check of the convergence

factor. When the convergence factor, S' (w), had a magnitude of 1

or more, then the previous step size was used until the magnitude

of S'(w) once again fell between 1 and 0. Should a previous step

size not yet exist (i.e., first iteration), then a step size of 0.1

was used. As a result, the second order algorithm was able to

train the net, and arrive with 7 weights having values between -1

and 1. This provided an improvement of three additional weights

over the first order algorithm. The seven weights and their values

are listed below in table 2. Next to each weight is the predicted

error upon the removal of the weight. The column on the far right

is the error measured when a test pattern was applied to the

network with the weight removed.
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Table 2.
Pruning Error (10 Hidden Nodes)

Weight Value Pred. Error Meas. Error

1 -0.82317 3.40 x 103 4.20 x 10- 4

2 -0.46541 -6.09 x 10'6 1.23 x 10-6

3 0.99105 2.01 x 10- 5  4.88 x 10- 5

4 -0.29116 1.94 x 10 7  7.45 x 10-6

5 0.51534 5.63 x D' 2.11 x 10-5

6 0.38774 8.90 x -05  3.50 x 10-5

7 -0.99846 4.52 x 10 4  1.99 x 10-5

In this network, of the 7 weights, no 2 weights were found to

be inputs associated with the same node. Therefore, no node was

removed. All of the weights except the first were removed from the

net, and the network re-trained - this time using only the second

order algorithm. After the net was trained only 3 weights were

found with values near zero. Their predicted and measured errors

were small (i.e., < 0.00001) so they were pruned. Two of these

weights were associated with the same node, and so the node was

removed too. Again, the net was retrained; however, this time the

net was only able to achieve an error of 0.17. Since this did not

meet the intended goal of 0.01, the process was terminated.

3-45



For the second test, a network was constructed with 15 nodes

in the hidden layer. Like the first net, this net was also

configured for a sigmoid output, and was trained to a total error

of 0.01 or less over all training samples. When the first order

algorithm was used to train the net, a total of 9 weights were

found to have values between -1 and 1. When the second order

algorithm was used, 14 weights were found to have values between -1

and 1. These weights are listed below in table 3 along with their

predicted and measured errors upon removal.
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Table 3.

Pruning Error (15 Hidden Nodes)

Weight Value Pred. Error Meas. Error

1 -0.056235 2.6 x i0-7 7.3 x 10-6

2 0.869313 9.3 x 10-6 9.8 x 10-6

3 0.554017 2.3 X 10-6 3.4 x 10 - 7

4 -0.673478 4.1 x 10- 5  8.3 x 10- 5

5 0.311442 7.3 x 10- 5  6.6 x 10- 5

6 0.769293 8.3 x 10-6 9.8 x i0 -7

7 0.662095 8.5 x 10- 5  7.5 x 10- 5

8 -0.038621 6.3 x 10 - 7 2.0 x 10-6

9 0.099876 9.1 X 10-7 5.5 x 10 - 7

10 -0.372197 6.3 X 10-6 1.3 x 10- 5

11 -0.432888 4.3 x 10- 5  7.7 x 10-6

12 0.795237 7.7 X 10-6 8.4 X 10-6

13 0.598286 8.3 X 10 -7 -4.3 x 10- 5

14 -0.542693 1.4 X 10-6 1.1 x i0 5

I
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These weights all had small errors associated with them, so

they were all candidates for removal. Of the 14 weights, no two

weights were found to be associated with a single node; therefore

no nodes were pruned. Once the weights were removed, the net was

retrainea. However, after only one pruning process this net, like

the previous net, failed to achieve the desired error of 0.01. It

was only able to achieve a total error of 0.13, so pruning ended.
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IV Summary and Conclusion

This research accomplished its major objective, namely to

reduce a network by eliminating weights using error prediction.

However, the technique was not able to reduce a network down to its

theoretical minimum size. This minimum size for the XOR problem is

three nodes. For networks which underwent reduction, each failed

to reach the minimum size due to excess error after pruning. The

networks were not able to achieve an error of less than 0.01 after

retraining with weights removed. It is difficult to provide a

reason for this, but it may be due to the manner in which the

algorithm drove itself to find a local minimum with weights close

to zero. It is quite possible that other local minima exist which

may not have weights of low value, but nevertheless do provide

lower values of error. It is difficult to draw a definite

conclusion not having a complete picture of the error surface.

Another technique which was not all that successful was

predicting the amount of error associated with a weight when it was

removed from the net. For some examples the predicted error came

quite close to the actual error, but for others it was off by

several magnitudes. For a couple instance-, the predicted error

was the wrong sign. The reason for these differences could be the

fact that the numbers used to calculate the error were so small
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that round off error could be causing loss of precision. Also

surprising, was the difficulty involved in choosing which weights

from among those close to zero should be removed. It was

originally hoped that this decision process would be made easy by

having some weights with very small errors associated with them,

and other weights having very large errors. However, as the

results show, it was difficult to choose which weights to remove

due to the way in which the error was distributed among the

weights. One conclusion which the results do seem to support is

that the error associated with weights, for the most part, is

distributed somewhat evenly. This may be the reason why a network

tends to degrade in a graceful manner when some of its nodes are

eliminated. Originally, it was hoped to use the full Hessian

matrix during training and for error prediction; however, this

proved to be too costly in terms of computational requirements so

the idea was dropped in favor of Le Cun's diagonal method. Perhaps

this approximation is the cause of some of the error, but it is not

belirved to be a major contributor, otherwise the algorithm may not

have been able to train the net.
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On the other 1and, this research did have a number of

successes and a few surprises. First, the process by which a

minimum was found having weights close to zero did work quite well

- first with the polynomial, then with the network. In both cases

the number of weights with values close to zero increased when the

algorithm which included the weight adjustment term was employed.

Also, the process by which the algorithm checked the value of S' (w)

to determine if it was within an interval of convergence performed

satisfactorily - at least on the polynomial. Along with checking

S' (w), the technique of using the previous step size (or a step

sized based upon the desired resolution) was also quite successful

on the polynomial at controlling the rate of divergence when

pas;ing through an inflection point. It is difficult to draw a

definite conclusion for the network, since the error surface is

unknown. Neve cheless, the results appear to show that the process

worked well for the network too, since the number if weights near

zero increased in number. This suggests that regions of divergence

were either not encountered, or were controlled so the algorithm

would not diverge to some far distant set of weights.
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One surprise finding ws how well the first order algorithm

converged when using a variable eta. Although it did not converge

in less iterations than the second order algorithm, it did do much

better than the first order algorithm using a fixed eta. It also

performed better than the first order algorithm which used a

momentum term.

Another surprise finding was that both the predicted and the

actual errors increased when a weight was removed. It might be

expected to have a handful of weights which would cause the error

to decrease. However, this was not the case. In almost every

example, removing the weight caused the error to increase. One

explanation for this may be the algorithm's effectiveness to locate

a local minimum. This would explain the incrrasa in error when a

weight is perturbated.
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Final Recommendations

The results presented here sugqest that reducing a network

using error prediction may not to be that effective or reliable.

As discussed above, the estimated error was not very close to the

actual error one received after removing the weight. Also, the

distribution of the predicted error among the weights made it

difficult to determine which weights to eliminate. Furthermore,

once the network was pruned a certain amount, it was unable to be

trained to the desired error.

In addition, this research suggest using a varying eta with

the first order algorithm may increase the rate of convergence over

an algorithm which uses a constant eta. Additional testing on

other networks will be necessary before any overall conclusions can

be reached, but the initial results look promising. However, where

a choice exists between using a first order training algorithm

versus a second order algorithm, the second order algorithm should

be ci1os-r because of its improved convergence properties.
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